3.5.9 \(\int \frac {x^4}{\sqrt {1-c^2 x^2} (a+b \text {ArcSin}(c x))^2} \, dx\) [409]

Optimal. Leaf size=141 \[ -\frac {x^4}{b c (a+b \text {ArcSin}(c x))}-\frac {\text {CosIntegral}\left (\frac {2 (a+b \text {ArcSin}(c x))}{b}\right ) \sin \left (\frac {2 a}{b}\right )}{b^2 c^5}+\frac {\text {CosIntegral}\left (\frac {4 (a+b \text {ArcSin}(c x))}{b}\right ) \sin \left (\frac {4 a}{b}\right )}{2 b^2 c^5}+\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \text {ArcSin}(c x))}{b}\right )}{b^2 c^5}-\frac {\cos \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 (a+b \text {ArcSin}(c x))}{b}\right )}{2 b^2 c^5} \]

[Out]

-x^4/b/c/(a+b*arcsin(c*x))+cos(2*a/b)*Si(2*(a+b*arcsin(c*x))/b)/b^2/c^5-1/2*cos(4*a/b)*Si(4*(a+b*arcsin(c*x))/
b)/b^2/c^5-Ci(2*(a+b*arcsin(c*x))/b)*sin(2*a/b)/b^2/c^5+1/2*Ci(4*(a+b*arcsin(c*x))/b)*sin(4*a/b)/b^2/c^5

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {4807, 4731, 4491, 3384, 3380, 3383} \begin {gather*} -\frac {\sin \left (\frac {2 a}{b}\right ) \text {CosIntegral}\left (\frac {2 (a+b \text {ArcSin}(c x))}{b}\right )}{b^2 c^5}+\frac {\sin \left (\frac {4 a}{b}\right ) \text {CosIntegral}\left (\frac {4 (a+b \text {ArcSin}(c x))}{b}\right )}{2 b^2 c^5}+\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 (a+b \text {ArcSin}(c x))}{b}\right )}{b^2 c^5}-\frac {\cos \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 (a+b \text {ArcSin}(c x))}{b}\right )}{2 b^2 c^5}-\frac {x^4}{b c (a+b \text {ArcSin}(c x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^4/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2),x]

[Out]

-(x^4/(b*c*(a + b*ArcSin[c*x]))) - (CosIntegral[(2*(a + b*ArcSin[c*x]))/b]*Sin[(2*a)/b])/(b^2*c^5) + (CosInteg
ral[(4*(a + b*ArcSin[c*x]))/b]*Sin[(4*a)/b])/(2*b^2*c^5) + (Cos[(2*a)/b]*SinIntegral[(2*(a + b*ArcSin[c*x]))/b
])/(b^2*c^5) - (Cos[(4*a)/b]*SinIntegral[(4*(a + b*ArcSin[c*x]))/b])/(2*b^2*c^5)

Rule 3380

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3383

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4807

Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] - Dist[f*(m/(b
*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]], Int[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /;
 FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {x^4}{\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2} \, dx &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {4 \int \frac {x^3}{a+b \sin ^{-1}(c x)} \, dx}{b c}\\ &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {4 \text {Subst}\left (\int \frac {\cos (x) \sin ^3(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^5}\\ &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {4 \text {Subst}\left (\int \left (\frac {\sin (2 x)}{4 (a+b x)}-\frac {\sin (4 x)}{8 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{b c^5}\\ &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac {\text {Subst}\left (\int \frac {\sin (4 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^5}+\frac {\text {Subst}\left (\int \frac {\sin (2 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^5}\\ &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}+\frac {\cos \left (\frac {2 a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^5}-\frac {\cos \left (\frac {4 a}{b}\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^5}-\frac {\sin \left (\frac {2 a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {2 a}{b}+2 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{b c^5}+\frac {\sin \left (\frac {4 a}{b}\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {4 a}{b}+4 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^5}\\ &=-\frac {x^4}{b c \left (a+b \sin ^{-1}(c x)\right )}-\frac {\text {Ci}\left (\frac {2 a}{b}+2 \sin ^{-1}(c x)\right ) \sin \left (\frac {2 a}{b}\right )}{b^2 c^5}+\frac {\text {Ci}\left (\frac {4 a}{b}+4 \sin ^{-1}(c x)\right ) \sin \left (\frac {4 a}{b}\right )}{2 b^2 c^5}+\frac {\cos \left (\frac {2 a}{b}\right ) \text {Si}\left (\frac {2 a}{b}+2 \sin ^{-1}(c x)\right )}{b^2 c^5}-\frac {\cos \left (\frac {4 a}{b}\right ) \text {Si}\left (\frac {4 a}{b}+4 \sin ^{-1}(c x)\right )}{2 b^2 c^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.22, size = 117, normalized size = 0.83 \begin {gather*} \frac {-\frac {2 b c^4 x^4}{a+b \text {ArcSin}(c x)}-2 \text {CosIntegral}\left (2 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right ) \sin \left (\frac {2 a}{b}\right )+\text {CosIntegral}\left (4 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right ) \sin \left (\frac {4 a}{b}\right )+2 \cos \left (\frac {2 a}{b}\right ) \text {Si}\left (2 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right )-\cos \left (\frac {4 a}{b}\right ) \text {Si}\left (4 \left (\frac {a}{b}+\text {ArcSin}(c x)\right )\right )}{2 b^2 c^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^4/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2),x]

[Out]

((-2*b*c^4*x^4)/(a + b*ArcSin[c*x]) - 2*CosIntegral[2*(a/b + ArcSin[c*x])]*Sin[(2*a)/b] + CosIntegral[4*(a/b +
 ArcSin[c*x])]*Sin[(4*a)/b] + 2*Cos[(2*a)/b]*SinIntegral[2*(a/b + ArcSin[c*x])] - Cos[(4*a)/b]*SinIntegral[4*(
a/b + ArcSin[c*x])])/(2*b^2*c^5)

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 250, normalized size = 1.77

method result size
default \(-\frac {4 \arcsin \left (c x \right ) \sinIntegral \left (4 \arcsin \left (c x \right )+\frac {4 a}{b}\right ) \cos \left (\frac {4 a}{b}\right ) b -4 \arcsin \left (c x \right ) \cosineIntegral \left (4 \arcsin \left (c x \right )+\frac {4 a}{b}\right ) \sin \left (\frac {4 a}{b}\right ) b -8 \arcsin \left (c x \right ) \sinIntegral \left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) b +8 \arcsin \left (c x \right ) \cosineIntegral \left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right ) b +4 \sinIntegral \left (4 \arcsin \left (c x \right )+\frac {4 a}{b}\right ) \cos \left (\frac {4 a}{b}\right ) a -4 \cosineIntegral \left (4 \arcsin \left (c x \right )+\frac {4 a}{b}\right ) \sin \left (\frac {4 a}{b}\right ) a -8 \sinIntegral \left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \cos \left (\frac {2 a}{b}\right ) a +8 \cosineIntegral \left (2 \arcsin \left (c x \right )+\frac {2 a}{b}\right ) \sin \left (\frac {2 a}{b}\right ) a +\cos \left (4 \arcsin \left (c x \right )\right ) b -4 \cos \left (2 \arcsin \left (c x \right )\right ) b +3 b}{8 c^{5} b^{2} \left (a +b \arcsin \left (c x \right )\right )}\) \(250\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(a+b*arcsin(c*x))^2/(-c^2*x^2+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/c^5*(4*arcsin(c*x)*Si(4*arcsin(c*x)+4*a/b)*cos(4*a/b)*b-4*arcsin(c*x)*Ci(4*arcsin(c*x)+4*a/b)*sin(4*a/b)*
b-8*arcsin(c*x)*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*b+8*arcsin(c*x)*Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*b+4*Si(4
*arcsin(c*x)+4*a/b)*cos(4*a/b)*a-4*Ci(4*arcsin(c*x)+4*a/b)*sin(4*a/b)*a-8*Si(2*arcsin(c*x)+2*a/b)*cos(2*a/b)*a
+8*Ci(2*arcsin(c*x)+2*a/b)*sin(2*a/b)*a+cos(4*arcsin(c*x))*b-4*cos(2*arcsin(c*x))*b+3*b)/b^2/(a+b*arcsin(c*x))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a+b*arcsin(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-(x^4 - 4*(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)*integrate(x^3/(b^2*c*arctan2(c*x, sqrt(c*
x + 1)*sqrt(-c*x + 1)) + a*b*c), x))/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a+b*arcsin(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*x^4/(a^2*c^2*x^2 + (b^2*c^2*x^2 - b^2)*arcsin(c*x)^2 - a^2 + 2*(a*b*c^2*x^2 - a*b
)*arcsin(c*x)), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{4}}{\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(a+b*asin(c*x))**2/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x**4/(sqrt(-(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 876 vs. \(2 (137) = 274\).
time = 0.51, size = 876, normalized size = 6.21 \begin {gather*} \frac {4 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {4 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{4} \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} + \frac {4 \, a \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {4 \, a \cos \left (\frac {a}{b}\right )^{4} \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {2 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {2 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} + \frac {4 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} + \frac {2 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {2 \, a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {2 \, a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right ) \sin \left (\frac {a}{b}\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} + \frac {4 \, a \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} + \frac {2 \, a \cos \left (\frac {a}{b}\right )^{2} \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {{\left (c^{2} x^{2} - 1\right )}^{2} b}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {b \arcsin \left (c x\right ) \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{2 \, {\left (b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}\right )}} - \frac {b \arcsin \left (c x\right ) \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {2 \, {\left (c^{2} x^{2} - 1\right )} b}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {a \operatorname {Si}\left (\frac {4 \, a}{b} + 4 \, \arcsin \left (c x\right )\right )}{2 \, {\left (b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}\right )}} - \frac {a \operatorname {Si}\left (\frac {2 \, a}{b} + 2 \, \arcsin \left (c x\right )\right )}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} - \frac {b}{b^{3} c^{5} \arcsin \left (c x\right ) + a b^{2} c^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(a+b*arcsin(c*x))^2/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

4*b*arcsin(c*x)*cos(a/b)^3*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - 4*
b*arcsin(c*x)*cos(a/b)^4*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) + 4*a*cos(a/b)^
3*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - 4*a*cos(a/b)^4*sin_integral
(4*a/b + 4*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - 2*b*arcsin(c*x)*cos(a/b)*cos_integral(4*a/b + 4*ar
csin(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - 2*b*arcsin(c*x)*cos(a/b)*cos_integral(2*a/b + 2*arcsin
(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) + 4*b*arcsin(c*x)*cos(a/b)^2*sin_integral(4*a/b + 4*arcsin(c
*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) + 2*b*arcsin(c*x)*cos(a/b)^2*sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c
^5*arcsin(c*x) + a*b^2*c^5) - 2*a*cos(a/b)*cos_integral(4*a/b + 4*arcsin(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) +
 a*b^2*c^5) - 2*a*cos(a/b)*cos_integral(2*a/b + 2*arcsin(c*x))*sin(a/b)/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) + 4*
a*cos(a/b)^2*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) + 2*a*cos(a/b)^2*sin_integr
al(2*a/b + 2*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - (c^2*x^2 - 1)^2*b/(b^3*c^5*arcsin(c*x) + a*b^2*c
^5) - 1/2*b*arcsin(c*x)*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - b*arcsin(c*x)*
sin_integral(2*a/b + 2*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - 2*(c^2*x^2 - 1)*b/(b^3*c^5*arcsin(c*x)
 + a*b^2*c^5) - 1/2*a*sin_integral(4*a/b + 4*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - a*sin_integral(2
*a/b + 2*arcsin(c*x))/(b^3*c^5*arcsin(c*x) + a*b^2*c^5) - b/(b^3*c^5*arcsin(c*x) + a*b^2*c^5)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^4}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {1-c^2\,x^2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/((a + b*asin(c*x))^2*(1 - c^2*x^2)^(1/2)),x)

[Out]

int(x^4/((a + b*asin(c*x))^2*(1 - c^2*x^2)^(1/2)), x)

________________________________________________________________________________________